B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis
نویسندگان
چکیده
In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis.
منابع مشابه
ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division.
Nuclear pores span the nuclear envelope and act as gated aqueous channels to regulate the transport of macromolecules between the nucleus and cytoplasm, from individual proteins and RNAs to entire viral genomes. By far the largest subunit of the nuclear pore is the Nup107-160 complex, which consists of nine proteins and is critical for nuclear pore assembly. At mitosis, the Nup107-160 complex l...
متن کاملVirtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis
Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which ch...
متن کاملThe nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells
In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are initially formed as core or noncore r...
متن کاملThe Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly.
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, ...
متن کاملPersistence of major nuclear envelope antigens in an envelope-like structure during mitosis in Drosophila melanogaster embryos.
Using monoclonal antibodies, we followed the fate of three different nuclear envelope proteins during mitosis in Drosophila early embryos by indirect immunofluorescence microscopy. Two of these proteins, lamin and otefin, a newly characterized nuclear envelope polypeptide with an apparent Mr of 53,000, are apparently present in an envelope-like structure that is present throughout mitosis. Immu...
متن کامل